
-

NASA Technical Memorandum 4 106

Interfacing Laboratory
Instruments to Multiuser,
Virtual Memory Computers

Edward R. Generazio
Lewis Research Center
Cleveland, Ohio

David B. Stang
Sverdru. TecbnoZogy, Inc.
Cleveland, Ohio

Don J. Roth
Lewis Research Center
Cleveland, Ohio

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Division

1989

Abstract
Incentives, problems and solutions associated with

interfacing laboratory equipment with multiuser, virtual
memory computers are presented. The major difficulty
concerns how to utilize these computers effectively in a
medium sized research group. This entails optimization of
hardware interconnections and software to facilitate multiple
instrument control, data acquisition and processing. The
architecture of the system that was devised and associated
programming and subroutines are described. An example
program involving computer controlled hardware for
ultrasonic scan imaging is provided to illustrate the operational
features.

Introduction
Computers based on ‘‘virtual memory”, multiuser

architecture have recently become economically available to
medium sized research groups. These new computers offer
advantages to the experimentalist, though acceptance has been
sometimes limited. One of the most important advantages of
a “virtual memory” machine is the capability of fast access
to arrays having dimensions greater than 64 kbytes. Arrays
larger than 64 kbytes were available on some older computers
based on “physical memory.” The access time to the memory
beyond 64 kbytes is extremely slow for these systems. Fast
access to large arrays is particularly important now where large
data sets are required for research systems.

Many researchers are accustomed to a dedicated computer
running a single-user operating and data acquisition system.
When there are several experimentalists in a research group,
the advantage of a multiuser system becomes important. The
resources a computer provides can be shared among the users
at a much lower cost than that of maintaining a separate
dedicated computer and peripherals for each project. Software
routines for instrument control and data acquisition as well
as data bases are sharable resources. Expensive hardware
resources, such as array processors, images processors,
terminals, printers and color plotters can also be shared.

There are difficulties in assembling the hardware and
software facilities required for a multiuser, experimental
research oriented system. The single-user operating systems
typically use built-in commands for easy instrument

communication and other functions well suited for the
experimenter’s needs. A multiuser computer’s input-output
capabilities are more powerful but harder to understand. The
user is left with the responsibility for bridging the gap between
the capabilities provided and his particular needs for data
acquisition and communication with devices.

The general purpose interface bus (GPIB) is used extensively
in single-user computer systems for data acquisition and
instrument control. For single-user systems the software for
data acquisition and instrument control is often provided by
the manufacturer of the system. This same bus can be used
in a multiuser system. However, the necessary software is not
provided. This lack of software has been a major obstacle for
researchers and has prevented them from moving from a single
to a multiuser virtual memory system.

In this work we will provide the reader with the information
required for developing a multiuser computer system that
meets the needs of a medium sized research group. The basic
computer system and its components are described. Specific
examples of GPIB instrument control and data acquisition with
a multiuser system are described for use in both BASIC and
FORTRAN programming. Additionally, a collection of high
and low level subroutines for computer control of instruments
have been listed in the appendixes.

Computer System and Instruments
Computer System

A computer system for a research group has several
components. Figure 1 shows a block diagram of a balanced
computer system specifically designed for an experimentally
intensive research group. The system is based‘on a virtual
memory computer. There are three central processing units
(CPUs) in this configuration, each with 16 Mbyte memory,
and two, 474 Mbyte, hard disks attached. The second hard
disk is for backup of system and user software. Generally 16
Mbytes of memory is required for the processing of large data
arrays. Each CPU (subsystem) has a major specific function.
CPU 1 is designed for data analysis and contains an array
processor for fast Fourier transformations. In addition, CPU
1 shares an image processor with CPU 2 for display images
viewed with the image processor. CPU 2 is designed for image
analysis and display. The 32 Gbyte optical disk drive provides
easy access and storage of images. CPU 3 is designed for data

1

Instruments

LASER PRINTER

MODEM
I I

PRO-

ARRAY OPTICAL 8 DIFFERENTIAL
PROCESSOR STORAGE CHANNELS

CHANNELS

H H-

I 1

Figure 1 .-Computer system.

acquisition and contains four GPIB interfaces yielding eight
GPIB channels (ports) and an analog to digital (A/D)
input/output interface with 16 channels. Up to nine users can
use the third CPU simultaneously for data acquisition. Of
course A/D interfaces may be added for additional users.
Alternatively, fewer users could run multiple experiments
simultaneously.

It is important to note that, although each CPU subsystem
has been designed for a specific function, it is not limited to
that function. Therefore, CPUs 1 and 2 also have GPIB and
A/D interfaces. As shown a total of 15 researchers may acquire
data or control instruments simultaneously via the GPIB or
A/D interfaces. Equally important to the number of users
working with the instruments is that additional users may be
simultaneously analyzing data, image processing, developing
software and generating reports.

The three CPUs are connected via an Ethernet connection
for easy transfer of files between systems. A terminal server
connected to the Ethernet allows for multiuser, remote access
to each of the CPUs. This remote access allows researchers
to have terminals and instruments placed at different locations
throughout the site. Off-site access to the system is permitted
via modems attached directly to the CPU or Ethernet. Modems
are used for initiating, stopping or checking the status of an
experiment on evenings or weekends.

A variety of instruments may be attached to the GPIB
interface. It is this interface that is often the stumbling block
in meeting the researchers’ needs. The problem is two-fold
for a multiuser system. First, the GPIB bus has a limit on total
length of 20 m. One cannot expect to have all experiments
taking place in one location (Le., room, building, etc.);
therefore, the need arises to extend the GPIB bus beyond this
limit. Second, friendly software for multiuser, virtual memory,
GPIB based instrument control and data acquisition is not
available.

A typical configuration for a nondestructive evaluation
research group is shown in figure 2. Several research
instruments including ultrasonic, x-ray tomographic, and
tunneling scanners are attached to the computer system.
Recently, GPIB bus extenders have been made available from
several manufacturers. By using bus extenders, these
instruments may be placed at locations remote from the CPUs.
The GPIB bus extenders are transparent to the researchers’
software so that no software modifications are needed.

The software required to control these instruments and for
data acquisition is the most complicated of the two problems
and for this reason it will be presented in detail.

Programming the components of the precision acoustic
scanner covers a wide range of software problems encountered
when connecting instruments to a computer via the GPIB bus.
We will focus on this system, as it represents the most common
problems.

IMMERSION (-!J+?D
TOMOGRAPHY

7 CPUs r -
CONTACT

Figure 2.-Instrument configuration for a nondestructive evaluation
research group.

2

The components of the precision acoustic scanning system
are shown in figure 3. The specimen to be interrogated is
mounted on a X-Y-Z positioning table. In contact with the
sample is a ultrasonic transducer mounted on a displacement
pressure gauge. During operation, the positioning table is
moved to a series of points that describe an array. This is done
while maintaining a constant pressure between the transducer
and specimen. At each point ultrasonic waveforms are
selected, digitized and stored for later analysis.

This system has the following six components that
communicate over the GPIB bus: three positioning tables,
waveform digitizer with a time base and voltage base, time
delay and voltmeter. The programming for this rather complex
scanning system contains all of the features needed for
adaptation to other computer controlled systems.

I X-Y-2 POSITIONING
TABLE

WAVEFORM DIGITIZER
~ GPIB k-1 - - - - - - -

TO TIME BASE
CPU VOLTAGE BASE H PRESSURE SENSOR

VOLTMETER I
TIME DELAY 1
ULTRASONIC

PULSER -

PRESSURE
GAUGE SUPPORT 7, I

r- PRESSURE GAUGE
I 1' -

SAMPLE A/,- TRANSDUCER
HOLDER 7

' -CERAMICSAMPLE

Figure 3.-Precision acoustic scanning system.

Programming for Instrument Control and
Data Acquisition

In this section a fundamental program, written in
FORTRAN, is presented that operates the precision acoustic
scanning system. The subroutines for this program are
provided in the appendixes.

Initially a GPIB channel is assigned to the precision acoustic
scanner. Here a channel represents a physical GPIB port on
the CPU.

The FORTRAN statement

CALL STRTGPIB (0)

initializes channel 0. Any instrument addressed subsequently
in the program will communicate through channel 0. Next each
component of the scanning system must be initialized. There
are six components, and their physical addresses have been
adjusted to be contiguous from 32 to 37. These are also called
addresses 0 to 5 where the it is implied that the standard base
GPIB address of 32 is to be added. The physical addresses
for the digitizer, time delay, X-axis, Y-axis, Z-axis and
voltmeter are set by the researcher at 0, 1, 2, 3, 4 and 5,
respectively.

DO 10 NUMBER = 0, 5
CALL INITINSTR (NUMBER)
10 CONTINUE

As indicated earlier, the specimen is scanned in an organized
array in the X-Y plane. The step size in the X, Y and Z
directions are stipulated by the user as

XSTEP = 100
YSTEP = 100
ZSTEP = 10 ! the z axis will not be used for this

! template. But an argument is
I required for these subroutines.

and sent to the X-, Y- and Z-axis of the positioning table

CALL SETXYZ (2, XSTEP, 3, YSTEP, 4, ZSTEP)

where 2;3 and 4 correspond to the X, Y and Z positioner
axes. The ultrasonic waveform needs to be digitized and
stored. The ultrasonic wave occurs at specific time and is set
by the time delay subroutine

CALL SETDELAY (1, DELAY(1)) 1

3

where the first argument is the address of the time delay.

wave within the digitizing window. The volts and time per
division of the time and voltage base are set

I DELAY(1) is the time delay required to place the ultrasonic

~

CALL PUTTIME (0, SETTING)
CALL SETVOLTDIV (0, SETTINGS(1))

where the first argument is the primary address of digitizer
that contains the time and voltage bases. The SETTING and

for displaying the ultrasonic wave in the digitizing window.
The actual digitization of the ultrasonic waveform occurs with

I SETTINGS(1) are the proper time and voltages per division

I the command

CALL GETSA (0, 64, 320, A)

where the first argument is the address of the digitizer and
64 is the number of samples that are to be averaged, 320 is
the intensity of the writing beam in the digitizer and “A” is
the array that will contain the digitized waveform. The
waveform is saved to a file opened as unit 6 with

WRITE (6) A i

After a waveform is collected at one point, another point
is selected with the X-Y-Z positioning table with

CALL MOVXYZ (2, 1 , 1)

where the first argument corresponds to the address of the X-
axis. The second argument corresponds to the axis to be moved
one step (1, 2 and 3 for the X-, Y- and Z-axis, respectively).
If the third argument is greater or less than zero, then the
motion is in the positive or negative direction, respectively.

This program would loop back to the CALL PRESSURE
statement to complete a scan line. The above FORTRAN
source code gives a template for writing other source code.
The complete source code for scanning a 5- by 5-mm square

Appendix B contains a listing and description of each of the
user callable high level subroutines used for instrument control.
The low level source code for these routines is provided in
appendix C. This source code may be adapted for writing other
instrument control subroutines for additional instruments not
covered in this work.

I area is given in appendix A.

The complete program SCAN.FOR must be compiled first

$ FORTRAN SCAN

and linked

$ LINK SCAN, SYS$SYSROOT:[SYSLIB]IMAGELIB/LIB -
SYS$SYSROOT: [SYSLIBIIEXSUI. OBJ

then run with

$ RUN SCAN

The subroutines provided as well as this and other data
acquisition and instrument control programs may be shared
with other users. Researchers may also write programs for
operating instruments attached to other GPIB channels. With
this capability, several researchers may be operating
instruments and acquiring data simultaneously. A considerable
amount of time is saved by sharing these developed programs.

We have found that, when programs and instruments are
easily shared, program development occurs at a rapid rate.
This rapid growth occurs because researchers modify each
control program to meet their particular needs. In doing so,
the fundamental program expands and is fine tuned by all the
researchers to form a very versatile system.

Summary
A multiuser, virtual memory computer system was devised

and programmed for use by a medium sized research group.
Problems associated with optimizing the system for shared,
multiuser applications were resolved. Particular attention was
given to hardware interfacing and development and
compilation of subroutines. The result is a straightforward
operating network for instrument control, data acquisition and
processing. A comprehensive example program is provided
for illustrative purposes.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 17, 1989

Appendix A
FORTRAN Program for Running Precision Acoustic Scanning System

C PROGRAM SCAN.FOR (November 7, 1988)
C by Edward R. Generazio and David B. Stang
C
C WRITTEN IN DEC FORTRAN VERSION, COMPILED AND RUN ON A DEC MICROVAX I1
C WITH MVMS VERSION 4.5 OPERATING SYSTEM
C
C THIS PROGRAM RUNS THE PRECISION ACOUSTIC SCANNING SYSTEM DEVELOPED AT NASA
C LEWIS RESEARCH CENTER, STRUCTURAL INTEGRITY BRANCH, STRUCTURES DIVISION,
C CLEVELAND, OHIO.
C
C THE INSTRUMENTS ATTACHED ARE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

TWO KLINGER SCIENTIFIC C-1.22 PROGRAMMABLE STEPPER
MOTOR CONTROLLER

TEKTRONIX 7912 PROGRAMMABLE DIGITIZER WITH A TEKTRONIX
7B90P PROGRAMMABLE TIME BASE AND
A TEKTRONIX 7A16P PROGRAMMABLE AMPLIFLIER (VOLTAGE BASE)

HEWLETT-PACKARD 5359A TIME SYNTHESIZER (TIME DELAY)

FLUKE 8520A DIGITAL MULTIMETER (VOLTMETER)

SENSOTEC LOAD SYSTEM. THE SENSOTEC ANALOG OUTPUT IS PROPORTIONAL
TO THE PRESSURE ON THE LOAD CELL AND IS MEASURED BY THE
VOLTMETER.

THIS PROGRAM MOVES THE SCANNER IN AN ORGANIZED 5MM BY 5MM
SQUARE ARRAY.

AT EACH POINT THE CONTACT PRESSURE BETWEEN THE TRANSDUCER
AND THE SPECIMEN BEING SCANNED IS 15 TO 17 POUNDS.

ALSO AT EACH POINT TWO WAVEFORMS ARE DIGITIZED AND STORED IN
MASS STORAGE FOR LATER ANALYSIS.

IMPLICIT NONE
INTEGER*4 XSTEP,YSTEP,ZSTEP,XAXIS,YAXIS ! DEFINITIONS
INTEGER*4 I,J,K,NAVE,MAI
INTEGER*2 A(512)
BYTE BUFFER(32),WRK0(80)
REAL DELAY(2),VOLTSET(2)
CHARACTER*10 FILNAME

INSTRUMENTS ARE SET AT FOLLOWING ADDRESSES

DIGITIZER - 0
TIME DELAY - 1
X AXIS - 2
Y AXIS - 3
z AXIS - 4
VOLTMETER = 5

5

FILNAME='SCANNER.DAT' ! NAME OF FILE TO SAVE WAVEFORM IN

OPEN(UNITI~,STATUSI'NEW',NAME='FILNAME',FORM='UNFORMATTED')
! OPEN THE FILE

DELAY(1)=4.35E-6 ! TIME DELAY FOR FIRST WAVEFORM
DELAY(2)=5.20E-6 ! TIME DELAY FOR SECOND WAVEFORM

VOLTSET(1)=0.5
VOLTSET(Z)=O.Z

XAXIS=5
YAXIS=s

! VOLTS PER DIVISION FOR FIRST WAVEFORM
! VOLTS PER DIVISION FOR SECOND WAVEFORM

! STEP SIZE FOR THE X AXIS
! STEP SIZE FOR THE Y AXIS
! STEP SIZE FOR THE Z AXIS .
! NUMBER OF STEPS ALONG THE X AXIS
! NUMBER OF STEPS ALONG THE Y AXIS '

NAVE= 6 4 ! NUMBER OF SAMPLES TO AVERAGE

CALL STRTGPIB(0) ! INITIALIZE CHANNEL 0 OF THE GPIB
! INTERFACE

DO 10 1-0,s ! INITIALIZE INSTRUMENTS AT GPIB
10 CALL INITINSTR(1) ! ADDRESSES 0,1,2,3,4 AND 5

CALL SETXYZ(2,XSTEP,3,YSTEP,4,ZSTEP)
! TELL THE POSITIONER THE SIZE OF THE
! STEPS TO TAKE

CALL GETMAI(0,MAI) ! GET THE CURRENT INTENSITY SETTING
! ON THE DIGITIZER

DO 20 I=l,YAXIS ! THE YAXIS WILL MOVE 5 TIMES

DO 30 J=l,XAXIS ! THE XAXIS WILL MOVE 5 TIMES

CALL PRESSURE ! ADJUST THE PRESSURE TO THE
! APPROPRIATE VALUE

DO 40 K-1,2 ! DO THIS FOR EACH WAVEFORM

CALL PUTTIME(~,DELAY(K))! SET THE DELAY TIME FOR THE WAVEFORM

CALL SETVOLTDIV(o,VOLTSET(K))
! SET THE VOLTS PER DIVISION FOR
! THE WAVEFORM

CALL GETSA(O,NAVE,MAI,A)
! SET THE DIGITIZER INTENSITY TO MA1
! AVERAGE OVER 64 SAMPLES
! PUT DIGITIZED WAVEFORM IN ARRAY
! CALLED "A"

4 0 WRITE(6)A ! SAVE WAVEFORM IN FILE NAMED SCANNER.DAT

IF(J.EQ.XAXIS) GOT0 30 ! IF THE END OF A SCAN LINE IS REACHED
! RETURN TO THE X AXIS ORIGIN AND
! INCREMENT THE Y AXIS

6
I

CALL MOVXYZ(2,1,1) ! OTHERWISE MOVE THE X AXIS ANOTHER STEP

30 CONTINUE I
I

IF(I.EQ.YAXIS) GOTO 20 ! THE SCAN IS OVER END THE PROGRAM
! CLOSE THE SCANNER.DAT FILE AND
! RELEASE THE GPIB CHANNEL

CALL MOVORG(1,XAXIS) ! OTHERWISE RETURN TO THE X AXIS ORIGIN
! AND

CALL MOVXYZ(3,2,1) ! MOVE THE Y AXIS ANOTHER STEP

20 CONTINUE

CLOSE (6) ! CLOSE THE FILE SCANNER.DAT

END ! END THE PROGRAM SCAN.FOR

INCLUDE 'GPIBASE.FOR' ! INCLUDE THE INSTRUMENT CONTROL
! AND DATA ACQUISITION SUBROUTINES
! IN THE FILE BASE.FOR
! WHEN COMPILING.
! THESE SUBROUTINES ARE IN THE
! APPENDIX OF THIS ARTICLE

C TWO SUBROUTINES THAT CALL SUBROUTINES IN BASE.FOR
C
C

C
C ADJUST Z AXIS TO GET A GOOD PRESSURE
C <<< +1 = DOWN' > > >
C

SUBROUTINE PRESSURE

PUPPER = . 8 5 ! UPPER PRESSURE = 17 lbs
PLOWER = . 7 5 ! LOWER PRESSURE = 1 5 LBS

200 CALL GETFLUKE(5,P) ! GET THE OUTPUT VOLTAGE FROM THE
! PRESSURE SENSOR

IF(P.LT.PLOWER)CALL MOVXYZ(4, 3, 1)
! IF PRESSURE IS TO LOW THEN INCREASE
! THE PRESSURE BETWEEN THE SPECIMEN
! AND THE TRANSDUCER

IF(P.GT.PUPPER)CALL MOVXYZ(4, 3 , -1)
! IF PRESSURE IS TO HIGH THEN DECREASE
! THE PRESSURE BETWEEN THE SPECIMEN
! AND THE TRANSDUCER

IF(P.GE.PLOWER .AND. P.LE.PUPPER)GOTO 900
! THE PRESSURE IS WITHIN AN ACCEPTABLE
! RANGE

GOTO 200 ! CHECK PRESSURE

900 RETURN
end

! PRESSURE ADJUSTED- RETURN TO MAIN PROGRAM

C
C
C

1000

1200

1400

SUBROUTINE MOVORG(SCANAXIS, NSTEPS)

MOVE SCANNER BACK TO THE SCANAXIS ORIGIN

INTEGER*4 SCANAXIS
INTEGER*2 NSTEPS

DO 1000 K-1,1000
CALL MOVXYZ(4, 3,-1)
DO 1200 KP1,NSTEPS-1
CALL MOVXYZ(2 , SCANAXIS, -1)
DO 1400 K=1,1000
CALL MOVXYZ(4, 3, 1)
CALL PRESSURE
CALL MOVXYZ(2,SCANAXIS, -1)
CALL MOVXYZ(2,SCANAXIS, 1)
RETURN
end

! MOVE Z AXIS UP

! MOVE X AXIS BACK

! MOVE Z AXIS DOWN
! ADJUST PRESSURE
! MOVE BACK AND FORTH
! TO MAKE A GOOD CONTACT

8

Appendix B
User Callable High Level Subroutines for Instrument Control

GPIBASE subroutines

GPIBASE refers to a DEC VAXflMS object code set containing
FORTRAN callable subroutines which can be used to communicate with
various GPIB (General Purpose Interface Bus, also known as
IEEE-488) instruments found in the Structural Integrity Branch
laboratories. The "DEC IEX Interface" consists an hardware
driver, version 3.0, along with software which is documented
in the "IEX-VMS-DRIVER" manual. The following describes
subroutines which utilize the IEX Interface to perform
tasks typically done in the labs.
Only one IEX channel is operated per main
program, and each subroutine requires an integer argument
which is the GPIB address of the instrument to be
addressed. For instance, the following is a table of the
configuration in the Stuctural Integrity Laboratories:

0, 2

0 , 3
0, 4
0 , 5

1, 3

1, 5

INSTRUMENT

Tektronix 7912AD Digitizer
Hewlett Packard 5359A Time

Synthesizer 1
Klinger Scientific c.122

XYZ Controller- X Axis
Y Axis
2 Axis

Fluke 8520A Multimeter

Tektronix 7854 Digital Oscilloscope
Testech LS86-C Ultrasonic Immersion

Scanner
Hewlett Packard Time

Synthesizer 2

A/D Converter
Hewlett Packard 5 3 5 9 1 A

GENERAL GPIBASE SUBROUTINES

STRTGPIB(N) - Assign and initialize IEX channel N
This must be called before calling channel N instrument
subroutines. N is less than M and M is the number of
physical ports. It assigns the VAXflMS internal address
and also clears the interface. Any instrument addressed
subsequently in the program will communicate through
channel N.

9

INITINSTR(ADDR 1 - Send initialization commands to instrument.
ADDR - GPIB address (integer)

Does Selected Device Clear and Remote ENable. Should
be called for every instrument intended for use.

SUBROUTINES FOR TEKTRONIX 7912 DIGITIZER ..

GETBESTMAI(ADDR, MA1 1 - Get the optimum intensity value
MAI - Returns intensity value (integer)

The number of interpolated points is found at current
intensity; if 0, intensity is increased.
Intensity is lowered step by step until the number
of interpolated points reaches 0. This should
be called before receiving data from 7912.

GETMAI(ADDR, MA1) - Get current value of intensity from 7912
MA1 - Returns current intensity value (integer)

SETVOLTDIV(ADDR, SETTING) - Set volts/div on 7912

SETTING - Must be one of: .01, .O2, .OS, .1, .2, .5, l., 2., 5.

SETTIMEDIV(ADDR, SETTING) - Set seconds/div on 7912
SETTING - Must be one Of: I., 2.8 or 5.

E -3, -6, -9, or -12 (e.g. 2.E-6)

AUTOSETVOLTS(ADDR, MAI, SETTING) - Find best voltage/div setting

MA1 - Intensity to use (integer)
SETTING - Returns volts/div setting (real)

The lowest voltage setting (.01) is tried initially
and number of interpolated points on the 7912 is found.
The setting is increased until interpolated points is 0.
MA1 should be value returned from GETBESTMAI.

DIGDEF(ADDR) - Do a "Digitize Defects"
This operation should be done before taking data. It
causes the 7912 to remember the defective points and
does not send them when data is requested.

10 I

I
t
I

t

I

GETGRID(ADDR, TIME, VOLTS) - Get Time/division and Volts/Division

TIME - Returns Seconds per division as set on the 7912 (real)
VOLTS - Returns Volts per division as set on the 7912 (real)

GETSA(ADDR, NAVE, MAI, A) - Acquire Sample-Averaged waveform
NAVE - Number of averages desired (integer; 0 thru 64)
MAI - Intensity to u5e (integer)
A(512) - Integer array returned of added samples

This subroutine sets intensity (should be value
returned from GETBESTMAL 1, requests sample averaging,
and requests read. If an error ocurrs, TEKRESET
is called and read is requested again. The array A must
be divided by NAVE to result in (1-255) = bottom to
top of oscilloscope display.

TEKGTL(ADDR - Send GO TO LOCAL and TV MODE commands to 7912

TEKRESET(ADDR) - Reset 7912
This calls INITINSTR, GETBESTMAI, and DIGDEF

PUTTIME(ADDR, TIME) - Set Time Delay
TIME - Desired Delay Time in seconds (0. < TIME < 166.E-3)

GETTIME(ADDR, TIME) - Get Delay
TIME - Returns time delay currently displayed (real)

GETSTATE(ADDR, STATE) - Get State of Time Synthesizer
STATE(66) - Byte array of codes describing the current

complete state of the device. Useful for
returning it back to a particular state with
PUTSTATE.

PUTSTATE(ADDR, STATE) - Set State Of Time Synthesizer
STATE(66) - A byte array of codes describing a state

to set the device to. (See GETSTATE)

11

SETXYZ(ADDRX, IX, ADDRY, IY, ADDRZ, IZ) - Initialize controller
Before issuing any commands to the Klinger, this subroutine
must be called to indicate the stepsize needed for each axis.

IX - X axis stepsize, in microns (integer; 0 < IX < 10000)
IY - Y axis stepsize
IZ - Z axis stepsize

II IY
II IZ

MOVXYZ(ADDR, IAXIS, IPM) - Move one step
IAXIS - Axis to move the distance according to most
recent call of SETXYZ (integer; [1,2,3 I - [X,Y,Z I 1 .

IPM - Flag for direction (integer; < O =backward, > O =forward)

GETFLUKE(ADDR, VOLTAGE) - Get voltage from Fluke Multimeter
VOLTAGE - Value read by meter in volts. (real)

SUBROUTINES FOR TEKTRONIX 7854 DIGITAL OSCILLOSCOPE ...
GETWFM(ADDR, AVES, DATA, XINCR, YZERO, YSCALE) - Acquire

512-point averaged currently displayed waveform

AVES - Number of averages (integer
DATA(512) - Real array representing averaged waveform
XINCR - Time increment in seconds between points (real
YZERO - Value in volts represented by DATA value of 0 (real 1
YSCALE - Scale factor Of DATA (real; VOLTS/DATA Value)

TEK78RESET(ADDR) - Reset 7854
This calls INITINSTR and does a serial poll.

12

1

MOVTESTECH(ADDR, IAXIS, IDEST) - Move to destination IDEST
IAXIS - Desired axis to move (1,2,3,4) = (X,Y,Z,Swivel)
IDEST - Destination in thousandths of an inch if X,Y, or 2;

hundredths of a degree if Swivel. (integer)
X limits: 0 < IDEST < 36000
Y limits: 0 < IDEST < 12000
2 limits: 0 < IDEST < 15000
Swivel limits: 0 < IDEST < 36000

FINDTESTECH(ADDR, IX, IY, I2) - Get Current location
IX - Returns X location in thousandths (integer)
IY - Returns Y location in thousandths
I2 - Returns 2 location in thousandths

II

11

GETA2D(ADDR, IDATA) - Get value from channel 4 Of H.P. A/D converter

IDATA - Returns value from 0 to 1024, scaled such that
1024 = approx 10 volts. (integer)

13

Appendix C
Low Level Source Code for Subroutines Listed in Appendix B

.
C #
C GPIBASE.FOR #
C
C
C
C
C
C
C
C
C
C
C # #

C
C
C
C

10020

10100

C

C
C
C
C
C

C

C

This is a set of subroutines which communicate #
with the IEEE-488 instruments found in the Structural #
Integrity Branch laboratories. For further #

David Stang and Edward Generazio #

Latest update: 3-NOV-1988 #

.

documentation, see the file GPIBASE.TXT

SUBROUTINE STRTGPIB(ICHAN)

Assign GPIB channel (IEX unit)
Call IESTRT to initialize the unit
Send IFC command to clear the interface

byte WRK0(80), BUFFER(32)
integer*2 ISTAT(4)
integer*4 ICHAN
character STRING*6,1CHAR*l
common /IBLK/ WRK0,BUFFER
format(I1)
ENCODE(1,10020, ICHAR)ICHAN
STRING = - IXA'//ICHAR//':'
ISTATUS = SYSSASSIGN(STRING , ICH , , I
WRITE(5,10100)ICH, ISTATUS
CALL IESTRT(WRKO, ICH, o,, 0, 1, ISTAT)
CALL IECMD(WRKO, ,, %REF('IFC'), ISTAT) .
FORMAT(' CHANNEL ASSIGNED ~ ' ~ 1 5 , ' STATUS =',I2)
RETURN
END

SUBROUTINE INITINSTR(LISTEN)

Call IEPOLL, send SDC, and any needed
initialization commands to device
at address LISTEN

byte WRK0(80), BUFFER(32)
byte ADDR(2), CHR8

integer*2 ISTAT(4)
NADDR = 1
ADDR(1) = LISTEN + 32
ADDR(2) = 96
IF(LISTEN.EQ.0)NADDR=2 ! IF THERE IS A SECONDARY ADDRESS

CALL IECMD(WRKO, ADDR,NADDR, %REF('SDC'), ISTAT)
CALL IECMD(WRKO, ADDR,NADDR, %REF('REN'), ISTAT)
RETURN

common /IBLK/ WRK0,BUFFER

! TWO BYTES MUST BE SENT

end

14

1

SUBROUTINE GETSA(ADDR, NAVE, MAI, A)
C
C Acquire 512-point waveform from Tek 7912
C
C NAVE = Number of averages
C MA1 = Main Intensity
C A(512) = Data

byte BUFFER(32), WRKO(80)
byte ABYTE(1029), LADDR(2), TADDR(2), B
character AINT*3, ANAVE*2, ABUFFER"32
integer*2 A(512), AWORD(512)' ISTAT(4)
integer*4 ADDR
equivalence (ABUFFER, BUFFER)
equivalence (AWORD(1), ABYTE(4))
common /IBLK/ WRK0,BUFFER

100 LADDR(1) = ADDR+32
LADDR(2) = 96
TADDR(1) = ADDR+64
TADDR(2) = 96

C
C Set intensity
C

10023 format(I3)
ENCODE(3,10023, AINT)MA1

ABUFFER(1:8) - 'MA1 '//AINT//';'
CALL IESEND(WRKO, BUFFER,8, LADDR,2, ISTAT)

C
C Request Sample Averaging
C

10022 format(I2)
ENCODE(2,10022, ANAVE)NAVE

ABUFFER(1:lO) - 'DIG SA,'//ANAVE//';'
CALL IESEND(WRKO, BUFFER,10, LADDR,2, ISTAT)

C
C Request Read, Get data, check f o r error (e.g. timeout error)
C

ABUFFER(1:6) - 'REA SA'
BUFFER(7) = 13
CALL IESEND(WRKO, BUFFER,7, LADDR,2, ISTAT)
CALL WAIT2(400)
CALL IERECV(WRKO, ABYTE,1029, ,, TADDR, ISTAT)

IF(ISTAT(l).NE.l)THEN
WRITE(8,10800)

CALL TEKRESET(AD,MAI)
GOT0 100
END1 F

10800 format(ERROR AT IERECV IN GETSA, TRYING AGAIN')

DO 1000 I=1,512 !
I1 = 2*1 + 2 I Byte swap !
B= ABYTE(I1)
ABYTE(I1) = ABYTE(II+1)
ABYTE(II+1) = B

1000 A(1) = AWORD(1)
RETURN
end

C

15

SUBROUTINE AUTOSETVOLTS(AD, MAI, SET)
C
C
C
C
C
C
C

10023

C
100

1133

C

C

200

900

C

Sets appropriate voltage setting by
checking on number of interpolated points

MA1 - Intensity
SET = Returns setting

byte BUFFER(32), WRKO(80)
character ABUFFER*32, AMAI*3
byte ADDR(2)
real SETTINGS(6)
integer*2 ISTAT(4)
intege r * 4 AD
equivalence (BUFFER, ABUFFER)

data SETTINGS/ 0.01,0.02,0.05,0.10,0.20,0.50 /
ADDR(~) = ~ ~ + 3 2
ADDR(2) = 96
ENCODE(3,10023, AMAI)MA1
format(I3)
1-1
IB=O
TYPE *,'CALLING SETVOLTSDIV'
CALL SETVOLTDIV(AD,SETTINGS(I))
WRITE (5,1133)SETTINGS(I)
FORMAT('+','CURRENT GAIN',FlO.S)
CALL WAIT2(100)
TYPE *,'SETVOLTS ANSWERED',SETTINGS(I)
ABUFFER(1:26) = 'MA1 '//AMAI//';DIG DAT;DEF 0N;ATC'
CALL IESEND(WRKO, BUFFER,26, ADDR,2, ISTAT)
CALL WAIT2(100)
CALL GETNUMINT(AD,NUMINT, MA1)
TYPE *,NUMINT

IF(NUMINT.EQ.999)THEN

common /IBLK/ WRK0,BUFFER

SET = 999.
GOTO 900
ENDI F

IF(NUMINT.EQ.0)THEN
IF(IB.EQ.l)GOTO 200
IB=l
GOTO 100
ENDI F

I=I+1
GOTO 100
ENDI F

IF(NUMINT.GT.0)THEN

SET = SETTINGS (I)
RETURN
end

SUBROUTINE GETBESTMAI(AD,MAI)
C
C Figure out the best intensity by finding number
C of interpolated points over a number of trials
C

byte BUFFER(32), WRKO(80)
character ABUFFER"32, AMAI*3
byte ADDR(2)
integer*2 ISTAT(4)

16

integer * 4 AD, MA1
equivalence (BUFFER, ABUFFER)

10023

C

C

C
100

C

900

C

C
C
C

21

5

C
10023

common /IBLK/ WRK0,B
format(I3)
ADDR(1) = AD+32
ADDR(2) = 96
IB - 0
TYPE *,'GONE TO LOCAL
CALL GETMAI(AD,ITRY
TYPE *,'GOT MA1 AGAIN
CALL DIGDEF(AD)
CALL WAIT2(2000)
ENCODE(3,10023, AMAI

'FFER

IN GBM'

IN GET BESTMAI'

ITRY
ABUFFER(1126) =. 'MA1 '//AMAI//';DIG DAT;DEF 0N;ATC'

CALL WAIT2(100)
CALL GETNUMINT(AD, NUMINT, MA1)
TYPE *,NUMINT
IF(NUMINT.GT.0)THEN

ITRY=ITRY + 1
IB = 1
GOTO 100
ENDI F

ITRY-ITRY - 1
IB = 0
GOTO 100

MA1 = ITRY + 20
RETURN

CALL IESEND(WRKO, BUFFER,^^, ADDR,~, ISTAT

IF(IB.EQ.l)GOTO 900

end

SUBROUTINE GETMAI(AD,MAI)

Get intensity from TEK 7912

byte BUFFER(32), WRKO(80)
character ABUFFER"32
byte ADDR (2)
int ege r * 2
integer*4 AD, MA1
equivalence (BUFFER, ABUFFER)

ADDR(1) = AD+32
ADDR(2) = 96
ABUFFER(1:d) = 'MAI?'
CALL IESEND(WRKO, BUFFER,4, ADDR,2, ISTAT)
ADDR(1) = 64
CALL IERECV(WRKO, BUFFER,ZO, ,, ADDR, ISTAT)
OUT-0
DO 5 K-5,20
IF(OUT.EQ.1)GOTO 5
IF(BUFFER(K).EQ.';')THEN
KK=K
OUT=1
ENDI F
CONTINUE

DECODE(20,10023, ABUFFER(5:20))MA1
format(I3)
WRITE(5,1133)MAI

ISTAT(4)

common /IBLK/ WRK0,BUFFER

DECODE(KK-5,10023, ABUFFER(S:KK-I))MAI

17

1133 FORMAT('+','CURRENT INTENSITY',I7)
RETURN
end

SUBROUTINE GETNUMINT(AD, NUM, MA1)
C
C Get number of interpolated points
C

byte BUFFER(32), WRKO(80)
character ABUFFER*32
byte ADDR (2)
i ntege r * 2
i ntege r * 4 AD, NUM, MA1
equivalence (BUFFER, ABUFFER)

common /IBLK/ WRK0,BUFFER

ISTAT(4)

10020 format(I)
4 0 ADDR(1) = AD+32

ADDR(2) = 96
IB=O

100 ABUFFER(1:d) = 'INT?'

CALL IESEND(WRKO, BUFFER,4, ADDR,2, ISTAT)
ADDR(1) = 64
CALL WAIT2(100)
CALL IERECV(WRKO, BUFFER,ZO, ,, ADDR, ISTAT)
IF(BUFFER(5).EQ.'N')THEN

IF(IB.GT.0)THEN
WRITE (8,10100)

CALL TEKRESET(AD,MAI)
GOTO 40
ENDI F

10100 format("N" RECIEVED IN GETNUMINT, RESETTING')

IB=l
GOTO 100
ENDI F

K= 1
200 IF(BUFFER(K).EQ.'?')THEN

WRITE(8,10200)

CALL TEKRESET(AD,MAI)
GOTO 4 0

10200 format(' "7" RECIEVED IN GETNUMINT, RESETTING')

ENDI F
IF(BUFFER(K).EQ.';')THEN

GOTO 300
ENDI F

K=K+1
GOTO 200

DECODE(K-4,10020, ABUFFER(4:K-1))NUM

300 WRITE(5,1133)NUM
1133 FORMAT('+','INTERPOLATED POINTS',I7)

RETURN
end

C
SUBROUTINE SETVOLTDIV(AD,SETTING)

byte BUFFER(32), WRKO(80)
character ABUFFER"32
character AVOLTS*lO
byte ADDR(2)
integer*2 ISTAT(4)

18

integer *4 AD
equivalence (BUFFER, ABUFFER)

ADDR(1) = AD+32
ADDR(2) = 97

10040 format(E10.5)
ENCODE(10,10040,AVOLTS)SETTING
ABUFFER(1:14) = 'V/D '//AVOLTS
CALL IESEND(WRKO, BUFFER,14, ADDR,2, ISTAT)
RETURN

common /IBLK/ WRK0,BUFFER

end

SUBROUTINE SETTIMEDIV(AD, SETTING)

byte BUFFER(32), WRKO(80)
character ABUFFER*32
character ATIME*lO
byte ADDR (2)
integer*2 ISTAT(4)
intege r * 4 AD
equivalence (BUFFER, ABUFFER)

ADDR(1) = AD+32
ADDR(2) = 98

10040 format(E10.5)
ENCODE(10,10040,ATIME)SETTING
ABUFFER(1:14) = 'T/D '//ATIME

RETURN

common /IBLK/ WRK0,BUFFER

CALL IESEND(WRKO, BUFFER,^^, ADDR,~, ISTAT

end

SUBROUTINE DIGDEF(AD)

byte BUFFER(32), WRKO(80)
character ABUFFER*32
byte ADDR (2)
integer*4 ad
integer * 2 ISTAT(4)
equivalence (BUFFER, ABUFFER)
common /IBLK/ WRK0,BUFFER
ADDR(1) = AD+32
ADDR(2) = 96
ABUFFER(1:ll) = 'DIG DEF,100'
CALL IESEND(WRKO, BUFFER,11, ADDR,%, ISTAT)
CALL WAIT2(2000)
RETURN
end

C

C
C
C

SUBROUTINE GETGRID(AD,TIME,VOLTS)

Get Time/Div and Volts/Div from TEK 7912

byte BUFFER(32), WRKO(80)
character ABUFFER*32
byte ADDR (2)
intege r * 2
integer * 4 AD
equivalence (BUFFER, ABUFFER)

ISTAT(4)

19

10040

200

300

400

900

C

C
C
C

common /IBLK/ WRK0,BUFFER
ADDR(1) = AD+32
ADDR(2) = 96
format(E)

ABUFFER(1:d) = "SI?'
CALL IESEND(WRKO, BUFFER,4, ADDR,2, ISTAT)
ADDR(1) = 6 4
K- 1
CALL IERECV(WRKO, BUFFER,lS, ,, ADDR, ISTAT)

IF(BUFFER(K).EQ.';')THEN

GOTO 300
ENDI F

K-K+1
GOTO 200

DECODE(K-4,10040, ABUFFER(4:K-1))TIME

ADDR(1) = 32
ABUFFER(1:d) = 'VS17'
CALL IESEND(WRKO, BUFFER,4, ADDR,2, ISTAT)
ADDR(1) = 64
K= 1
CALL IERECV(WRKO, BUFFER,lS, ,, ADDR, ISTAT)

IF(BUFFER(K).EQ.':')THEN
DECODE(K-i,iooiO,
GOTO 900
ENDI F

K=K+1
GOTO 400
RETURN
end

SUBROUTINE TEKGTL(AD)

Tell 7912 to Go To

byte BUFFER(32)'
character ABUFFER"32
byte ADDR (2)
integer*2 ISTAT(4)
in tese r * 4 AD

ABUFFER(4 : K-1))VOLTS

Local & put into TV MODE

WRKO(8 0)

equiGalence (BUFFER, ABUFFER

ADDR(I) = ~ ~ + 3 2
common /IBLK/ WRKO'BUFFER

ADDR(2) = 96
ABUFFER(1:8) = 'MODE TV;'
CALL IESEND(WRKO, BUFFER,8, ADDR,2, ISTAT)
CALL IECMD(WRKO, ADDR,2, %REF('GTL'), ISTAT)
RETURN
end

SUBROUTINE TEKRESET(AD,MAI)
C

byte BUFFER(32)' WRKO(80)
integer*4 AD,MAI

common /IBLK/ WRKO, BUFFER
CALL INITINSTR(0)
CALL SETVOLTDIV(AD,.5)
CALL GETMAI(AD,MAI)
CALL GETBESTMAT.(AD,MAI)

20

C

C

C
C
C

CALL DIGDEF(AD)
RETURN
end

SUBROUTINE PUTTIME(AD,TIME)

10100

C
C
C

Set time synthesizer delay to TIME

byte BUFFER(321, WRKO(80)
character CTIME*10
integer*2 ISTAT(4)
integer*4 AD
byte ADDR
equivalence (BUFFER(2), CTIME)

ADDR = AD+32
ENCODE(10,10100, CTIME) TIME
format(E10.3)
BUFFER(1) = 'D'
BUFFER(12) = ',I
CALL IESEND(WRKO, BUFFER,12, ADDR,1, ISTAT)
RETURN

common /IBLK/ WRK0,BUFFER

end

SUBROUTINE GETTIME(AD,D)

Get Time delay from synth

byte BUFFER(321, WRK0(80), STATE(66)
byte ADDR
integer*2 DAVE(661, ISTAT(4)
integer*4 AD
real U(121, P(121, G(7)

CALL GETDAVE(AD,DAVE)
U(12) = REAL(DAVE(12))
B = 0.
DO 200 I= 6,11
U(1) = REAL(DAVE(1))
P(1) U(1) - 6.*REAL((IINT(U(1)/16.))) The algorithm for converting the array DAVE(&) to the time delay D

was developed by Alex Vary, G(1-5)s P(I)*(lo.**(-2*(1-5)))

NASA Lewis Research Center, BPB + G(1-5)
Cleveland, Ohio.

A = U(12)-244.
D = B * (lo.**(A-12.))
RETURN

common /IBLK/ WRK0,BUFFER

end

C
SUBROUTINE PUTSTATE(AD,STATE)

C
C
C

Put State into Time Synth

byte BUFFER(32), WRK0(80), STATE(66),ADDR
integer*2 ISTAT(4)
integer*4 AD

ADDR = AD+32
common /IBLK/ WRK0,BUFFER

21

C
C
C

BUFFER(1) = 'D'
BUFFER(2) = 13
CALL IESEND(WRKO, BUFFER,2, ADDR,1, ISTAT)
BUFFER(1) = 'L'
BUFFER(2) = 'N'
CALL IESEND(WRKO, BUFFER,Z, ADDR,1, ISTAT)
CALL IESEND(WRKO, STATE,66, ADDR,1, ISTAT)
RETURN
end

SUBROUTINE GETSTATE(AD,STATE)

Get State from Time Synth

byte BUFFER(321, WRK0(80), STATE(66)
byte LADDR, TADDR
integer*2 ISTAT(4)
integer*4 AD

common /IBLK/ WRK0,BUFFER

TADDR = AD+32
LADDR = AD+64
BUFFER(1) - 'D'
BUFFER(2) = 13
CALL IESEND(WRKO, BUFFER,2, TADDR,1, ISTAT)
BUFFER(1) = 'T'
BUFFER(2) = 'E'
BUFFER(3) = 13
CALL IESEND(WRKO, BUFFER,3, TADDR,1, ISTAT)
CALL IERECV(WRKO, STATE,66, ,, LADDR, ISTAT)

RETURN
end

C
SUBROUTINE GETDAVE(AD,DAVE)

C
C Get State from Time Synth as integers with stuff
C in the MSB
C

byte BUFFER(321, WRK0(80), STATE(661, B
byte TADDR, LADDR
integer*2 DAVE(66), ISTAT(4), I
integer*4 ad
character MSB*2, LSB*l
equivalence (MSB,I)
equivalence (LSB,B)

common /IBLK/ WRKO'BUFFER

TADDR = AD+32
LADDR = AD+64
BUFFER(1) = 'D'
BUFFER(2) = 13
CALL IESEND(WRKO, BUFFER,2, TADDR,l, ISTAT)
BUFFER(1) = 'T'
BUFFER(2) = 'E'
BUFFER(3) = 13
CALL IESEND(WRKO, BUFFER,3, TADDR,1, ISTAT)
CALL IERECV(WRKO, STATE,66, ,, LADDR, ISTAT)
I=O
K=O

22

700

C

C
C
C

10020
10026
10124

90

200

C
C
C

DO 700 J=1,20
B = STATE(J+K)
MSB(1:1)= LSB
DAVE(J+K) = I
B = STATE(J+K+l)
MSB(1:1)= LSB
DAVE(J+K+l) = I
K=K + 1
RETURN
end

Here is where we stick STATE
into the MOST SIGNIFICANT BYTE
of DAVE

SUBROUTINE SETXYZ(AD,I1, A2,12,A3,13

Initialize Klinger with step values

byte BUFFER(32), WRKO(80)
byte ADDR, BSTEP(6)
integer ISTEP(3),AD,Al,A2,A3
integer*2 ISTAT(4)
character ABUFFER"25, ASTEP*6
equivalence (ABUFFER, BUFFER)
equivalence (ASTEP, BSTEP)

format(I)
format(I6)
format(',A32)
ISTEP(1) = I1
ISTEP(2) = I2
ISTEP(3) = I3
ABUFFER(1:5) - 'R 253'
BUFFER(6) =13
ABUFFER(7:g) = 'S 2'
BUFFER(10) -13
ABUFFER(11:14) ='F 20'
BUFFER(15) -13

BUFFER(17)s' '

common /IBLK/ WRK0,BUFFER

BUFFER(16) = 'N'

DO 200 I=1,3
NDIG = IFIX(ALOGlO(REAL(ISTEP(1))))+1
N6M = 6-NDIG
ENCODE(6,10026, ASTEP)ISTEP(I)
DO 90 IDIG=l,NDIG
BUFFER(17+IDIG) = BSTEP(N6M+IDIG)
BUFFER(NDIG+l8) = 13
BUFFER(NDIG+19) = 'A'
BUFFER(NDIG+20) = 13
NSEND = 2O+NDIG
ADDR = AD+32+(1-1)
CALL IESEND(WRKO, BUFFER,NSEND, ADDR,1, ISTAT)
RETURN
end

SUBROUTINE MOVXYZ(AD,IAXIS, IPORN)

Move Klinger one step

byte BUFFER(321, WRK0(80), ADDR

23

integer*2 ISTAT(4), LISTEN
integer*4 AD

common /IBLK/ WRK0,BUFFER
ADDR = AD + 32
IF(IPORN.GT.0)BUFFER(l) = '+ '
IF(IPORN.LT.0)BUFFER(l) = '-'
BUFFER(2) = 13
BUFFER(3) = 'G'
BUFFER(4) = 13
CALL IESEND(WRKO, BUFFER,4, ADDR,1, ISTAT)
RETURN

l end
C

C
C Get value from Fluke Multimeter
C

I SUBROUTINE GETFLUKE(AD,VOLTS)

byte BUFFER(32), WRKO(80)
character ABUFFER*32
byte ADDR
integer*2 ISTAT(4)
in tege r * 4
equivalence (BUFFER, ABUFFER)

AD

common /IBLK/ WRK0,BUFFER
10 ADDR = AD+32

ABUFFER(1:3) = 'VC?'
CALL IESEND(WRKO, BUFFER,3, ADDR,1, ISTAT)
ADDR = 69
CALL IERECV(WRKO, BUFFER,14, ,, ADDR, ISTAT)
IF(BUFFER(l).NE.'+' .AND. BUFFER(l).NE.'-')GOTO 10

I DECODE(12,10040, ABUFFER(1:12))VOLTS

I RETURN
10040 format(E 1

end

SUBROUTINE WAIT2(NWAIT)

DO 1000 IWAIT=l,NWAIT
DO 500 I=l,NWAIT
do 501 j-1,nwait

501 continue
500 CONTINUE

1000 CONTINUE
RETURN
END

SUBROUTINE MOVTESTECH(AD, IXYORZ, IDEST)
C
C Move TESTECH scanner IXYORZ axis (1,2,3,4) = (X,Y,Z,S)
C to destination IDEST

BYTE BUFFER(48), WRKO(80)
BYTE IXYORZ,B,B6(6),SCODE(4),CR,TADDR,LADDR
INTEGER"4 AD
CHARACTER"6 C6
EQUIVALENCE (B6,C6)
COMMON /IBLK/ WRK0,BUFFER
DATA SCODE/ 68,70,87,73 /, CR/13/

24

TADDR = AD+32
LADDR = AD+32
IF(IDEST.LT.0)THEN

TYPE *,' ILLEGAL DESTINATION
GOT0 900
ENDI F

BUFFER(1) = SCODE(IXYORZ)
C
C Convert IDEST to a 6-byte character string
C with leading zeros and place in BUFFER(2:7)
C

ENCODE(6,10070, C6)IDEST
DO 100 I-1,6

B=B6 (I)
IF(B.EQ.32)B=48

100 BUFFER(I+l) = B
10070 FORMAT(I6)

C
C Call IESEND to move
C

BUFFER(8) = CR

CALL IESEND(WRKO, BUFFER,8, TADDR,1, ISTAT)
CALL IERECV(WRKO, BUFFER,2, ,, LADDR, ISTAT)
IF(IXYORZ.EQ.4)THEN

BUFFER(1) = 'Z'
BUFFER(2) = CR
CALL IESEND(WRKO, BUFFER,2, TADDR,l, ISTAT)
CALL IERECV(WRKO, BUFFER,2, ,, LADDR,1, ISTAT)
ENDI F

900 RETURN
END

SUBROUTINE FINDTESTECH(AD,IXPOS,IYPOS,IZPOS)
C

C
C Ask TESTECH scanner f o r current position and
C return X, Y, and Z axis positions as integers
C in units of thousandhs of an inch
C

BYTE WRK1(80), BUFFER(48)
BYTE GETPOS(62), CR
INTEGER*2 ISTAT(4)
INTEGER"4 AD
CHARACTER*6 XPOS, YPOS, ZPOS
EQUIVALENCE (XPOS, GETPOS(1)) , (YPOS, GETPOS(7))
EQUIVALENCE (ZPOS, GETPOS(13))
COMMON /IBLK/ WRK1, BUFFER
DATA CR/13/

TADDR = AD+32
LADDR = AD+64
BUFFER(1) = 'K'
BUFFER(2) = CR
CALL IESEND(WRK1, BUFFER,2, TADDR,1, ISTAT)
CALL IERECV(WRK1, GETPOS,62, ,, LADDR, ISTAT)

IF(ISTAT(l).NE.l)CALL LIB$SIGNAL(%VAL(ISTAT(l)))

DECODE(6,10060, XPOS)IXPOS
DECODE(6,10060, YPOS)IYPOS
DECODE(6,10060, ZPOS)IZPOS

10060 FORMAT(I6)

RETURN
END

C
C
C

C
C Get one word of data from channel 4 of the H.P. A/D converter
C

SUBROUTINE GETA2D(AD, DATA)

BYTE WRK0(80), BUFFER(48)
BYTE A(2),B(2), TADDR, LADDR
INTEGER*2 D,DATA, ISTAT(4)
INTEGER"4 AD
EQUIVALENCE (B,D)
COMMON /IBLK/ WRKO, BUFFER

10010 FORMAT(A3)
10020 FORMAT(A2)

~

TADDR = AD+32
LADDR = AD+64

C
C Send "H8A", wait, then send "JF"
C

I ENCODE(6,10010, BUFFER)'H8A'
I CALL IESEND(WRKO, BUFFER,3, TADDR,1, ISTAT)

CALL WAIT3(1)
ENCODE(6,10020, BUFFER)'JF'
CALL IESEND(WRKO, BUFFER,2, TADDR,1, ISTAT)

C
C G e t data, put 1st byte in DATA'S 2nd byte, etc
C

CALL IERECV(WRKO, A,2, ,, LADDR, ISTAT)
B(1) - A(2)
B(2) = A(1)
DATA = D

RETURN
END

SUBROUTINE WAIT3(NWAIT)

DO 1000 IWAIT=l,NWAIT
DO 500 I=1,1000

500 CONTINUE
1000 CONTINUE

RETURN
END

26

I

1. Report No.

NASA TM-4106

NAsn
2. Government Accession No.

National Aeronautics and

7. Key Words (Suggested by Author(s))

GPIB; Interfacing; Computers; Instruments; Software;
Fortran; Image processing; Ultrasonics; Array
processing

~~~ 

Report Documentation Page 

18. Distribution Statement 

Unclassified - Unlimited 
Subject Category 38 

9. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 

Unclassified Unclassified 32 

7. Author(s) 

Edward R. Generazio, David B. Stang, and Don J. Roth 

22. Price' 

A03 

9. Performing Organization Name and Address 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135-3191 

2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546-0001 

3. Recipient's Catalog No. 

5. Report Date 

March 1989 
6. Performing Organization Code 

8. Performing Organization Report No. 

E-45 10 

10. Work Unit No. 

535-07-01 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Memorandum 

14. Sponsoring Agency Code 

5. Supplementary Notes 

Edward R. Generazio and Don J. Roth, NASA Lewis Research Center; David B. Stang, Sverdrup Technology, Inc., 
NASA Lewis Research Center Group, Cleveland, Ohio 44135. 

6. Abstract 

Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual 
memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a 
medium sized research group. This entails optimization of hardware interconnections and software to facilitate 
multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and 
associated programming and subroutines are described. An example program involving computer controlled 
hardware for ultrasonic scan imaging is provided to illustrate the operational features. 

*For sale by the National Technical Information Service, Springfield, Virginia 221 61 NASA FORM 1626 CCT 86 

NASA-Langley, 1989 


